荣誉资质 新闻 24小时咨询热线: 4008-699-569 全国统一投诉电话(仅处理投诉问题): 400-028-1009 戴氏教育 专注教育提升30
报价器在线查询费用报价

线上查询预约,享三重优惠好礼!!

  • 免费领取学习资料一套
  • 两人同行一人免单
  • 免费七天试读
  • 定制完整辅导教学方案

补习提分快人一步!

主动出击就是名校的第一步!

湖南补习咨询热线:4008-699-569

  • *
  • *

祁东县高三生物补习学校一学期收费

文章出处: 浏览次数:发表时间:2021-02-21 00:50
祁东县高三生物补习学校一学期收费,湖南戴氏教育补习培训机构,专注小学、初中、高中文化课补习培训,开办一对一、大班、小班等多种班型,其中设有单招培训、艺考文化课、高考复读等多种特色课程,专注解决学生学习难、学习成绩差、考试分数低等问题,专业名师、多年教龄老教师、名校退休教师强大师资阵容。详情咨询4008-699-569

马上就要期中考试了,大家复习的怎么样呢?查字典数学网与大家分享的是高一数学必修一第一章集合与函数概念的知识,与你一起复习!第一章 ...

查字典数学网为您提供的是高一数学必修一第二章函数期中必备知识点,希望对你有帮助!

函数

1.函数的概念

设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数.记作: y=f(x),xA.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| xA }叫做函数的值域.

注意:

1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:

(1)分式的分母不等于零;

(2)偶次方根的被开方数不小于零;

(3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1.

(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

(6)指数为零底不可以等于零,

(7)实际问题中的函数的定义域还要保证实际问题有意义.

相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);

②定义域一致 (两点必须同时具备)

2.值域 : 先考虑其定义域

(1)观察法 (2)配方法 (3)代换法

3. 函数图象知识归纳

(1)定义:

在平面直角坐标系中,以函数 y=f(x) , (xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .

(2) 画法

1.描点法: 2.图象变换法:常用变换方法有三种:1)平移变换2)伸缩变换3)对称变换

4.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 (3)区间的数轴表示.

5.映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作f(对应关系):A(原象) B(象)

对于映射f:AB来说,则应满足:

(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;

(2)集合A中不同的元素,在集合B中对应的象可以是同一个;

(3)不要求集合B中的每一个元素在集合A中都有原象。

6.分段函数

(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的自变量的取值情况.

(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

补充:复合函数

如果y=f(u)(uM),u=g(x)(xA),则 y=f[g(x)]=F(x)(xA) 称为f、g的复合函数。

二.函数的性质

1.函数的单调性(局部性质)

(1)增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

注意:函数的单调性是函数的局部性质;

数学是学习和研究现代科学技术必不可少的基本工具。查字典数学网为大家推荐了高一级数学期中考试必背知识点,请大家仔细阅读,希望你喜欢。...

戴氏高考补习班

(2) 图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3).函数单调区间与单调性的判定方法

(A) 定义法:

(1)任取x1,x2D,且x1

(2)作差f(x1)-f(x2);或者做商

(3)变形(通常是因式分解和配方);

(4)定号(即判断差f(x1)-f(x2)的正负);

(5)下结论(指出函数f(x)在给定的区间D上的单调性).

(B)图象法(从图象上看升降)

(C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:同增异减

注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.

8.函数的奇偶性(整体性质)

(1)偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2)奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.

(3)具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

9.利用定义判断函数奇偶性的步骤:

○1首先确定函数的定义域,并判断其是否关于原点对称;

○2确定f(-x)与f(x)的关系;

○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x) f(x) = 0,则f(x)是奇函数.

注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)f(x)=0或f(x)/f(-x)=1来判定; (3)利用定理,或借助函数的图象判定 .

10、函数的解析表达式

(1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2)求函数的解析式的主要方法有:1.凑配法2.待定系数法3.换元法4.消参法

11.函数最大(小)值

○1 利用二次函数的性质(配方法)求函数的最大(小)值

○2 利用图象求函数的最大(小)值

○3 利用函数单调性的判断函数的最大(小)值:

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

高一数学必修一第二章函数期中必备知识点就为大家总结到这,更多内容请关注查字典数学网!

【高一数学第二章函数期中必备知识点】相关文章:

文章内容摘自网络,如有侵权请联系删除!!

数学在科学发展和现代生活生产中的应用非常广泛,以下是查字典数学网为大家整理的高一数学期中考试必背知识点,希望可以解决您所遇到的相关...

祁东县高三生物补习学校一学期收费
下一篇:没有了 上一篇:衡阳综合保税区高二补习班哪家好

热门补习推荐

最新补习资讯

回顶部