荣誉资质 新闻 24小时咨询热线: 4008-699-569 全国统一投诉电话(仅处理投诉问题): 400-028-1009 戴氏教育 专注教育提升30
报价器在线查询费用报价

线上查询预约,享三重优惠好礼!!

  • 免费领取学习资料一套
  • 两人同行一人免单
  • 免费七天试读
  • 定制完整辅导教学方案

补习提分快人一步!

主动出击就是名校的第一步!

湖南补习咨询热线:4008-699-569

  • *
  • *

长沙市高三理综培训机构联系方式

文章出处: 浏览次数:发表时间:2021-02-18 16:50
长沙市高三理综培训机构联系方式,湖南戴氏教育补习培训机构,专注小学、初中、高中文化课补习培训,开办一对一、大班、小班等多种班型,其中设有单招培训、艺考文化课、高考复读等多种特色课程,专注解决学生学习难、学习成绩差、考试分数低等问题,专业名师、多年教龄老教师、名校退休教师强大师资阵容。详情咨询4008-699-569

及时对知识点进行总结,整理,有效应对考试不发愁,下文由查字典大学网高中频道为大家带来了高一下学期数学期末考试知识要点,欢迎大家参考...

学习是一个不断深入的过程,他需要我们对每天学习的新知识点及时整理,接下来由查字典大学网为大提供了高一数学下学期期末备考知识点,望大家好好阅读。

第一章 集合与函数概念

一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素. 2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性;3.元素的无序性 .第一章 集合与函数概念

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.

2、集合的中元素的三个特性:

1.元素的确定性; 2.元素的互异性; 3.元素的无序性

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素.

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.

(4)集合元素的三个特性使集合本身具有了确定性和整体性.

3、集合的表示:{ … } 如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}

1. 用拉丁字母表示集合:A={我校的篮球队员}B={12345}

2.集合的表示方法:列举法与描述法.

注意啊:常用数集及其记法:

非负整数集(即自然数集) 记作:N

正整数集 N*或 N 整数集Z 有理数集Q 实数集R

关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上.

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}

4、集合的分类:

1.有限集 含有有限个元素的集合

2.无限集 含有无限个元素的集合

3.空集 不含任何元素的集合 例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系子集

注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合.

反之: 集合A不包含于集合B或集合B不包含集合A记作A B或B A

2.“相等”关系(5≥5,且5≤5,则5=5)

实例:设 A={x|x2-1=0} B={-11} “元素相同”

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

① 任何一个集合是它本身的子集.A?A

②真子集:如果A?B且A? B那就说集合A是集合B的真子集,记作A B(或B A)

③如果 A?B B?C 那么 A?C

④ 如果A?B 同时 B?A 那么A=B

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集.

三、集合的运算

1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集.

记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集.记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.

3、交集与并集的性质:A∩A = A A∩φ= φ A∩B = B∩A,A∪A = A

A∪φ= A A∪B = B∪A.

4、全集与补集

(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

记作: CSA 即 CSA ={x ? x?S且 x?A}

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集.通常用U来表示.

(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

查字典数学网为大家整理了高二数学下册期末重要知识点,希望大家跟着小编的思路归纳知识点和小编一起来学习吧。1.正弦、余弦公式的逆向思维...

戴氏艺考文化课补习

二、函数的有关概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

三角函数公式

两角和公式

sin(A B)=sinAcosB cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB sinAsinB

tan(A B)=(tanA tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1 tanAtanB)

ctg(A B)=(ctgActgB-1)/(ctgB ctgA) ctg(A-B)=(ctgActgB 1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1 cosA)/2) cos(A/2)=-√((1 cosA)/2)

tan(A/2)=√((1-cosA)/((1 cosA)) tan(A/2)=-√((1-cosA)/((1 cosA))

ctg(A/2)=√((1 cosA)/((1-cosA)) ctg(A/2)=-√((1 cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A B) sin(A-B) 2cosAsinB=sin(A B)-sin(A-B)

2cosAcosB=cos(A B)-sin(A-B) -2sinAsinB=cos(A B)-cos(A-B)

sinA sinB=2sin((A B)/2)cos((A-B)/2 cosA cosB=2cos((A B)/2)sin((A-B)/2)

tanA tanB=sin(A B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA ctgBsin(A B)/sinAsinB -ctgA ctgBsin(A B)/sinAsinB

某些数列前n项和

1 2 3 4 5 6 7 8 9 … n=n(n 1)/2 1 3 5 7 9 11 13 15 … (2n-1)=n2

2 4 6 8 10 12 14 … (2n)=n(n 1) 12 22 32 42 52 62 72 82 … n2=n(n 1)(2n 1)/6

13 23 33 43 53 63 …n3=n2(n 1)2/4 1*2 2*3 3*4 4*5 5*6 6*7 … n(n 1)=n(n 1)(n 2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2 c2-2accosB 注:角B是边a和边c的夹角

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

乘法与因式分 a2-b2=(a b)(a-b) a3 b3=(a b)(a2-ab b2) a3-b3=(a-b(a2 ab b2)

三角不等式 |a b|≤|a| |b| |a-b|≤|a| |b| |a|≤b-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b √(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1 X2=-b/a X1*X2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac



【精编高一数学下学期期末备考知识点整理】相关文章:

文章内容摘自网络,如有侵权请联系删除!!

在学习新知识的同时,既要及时跟上老师步伐,也要及时复习巩固,知识点要及时总结,这是做其他练习必备的前提,下面为大家总结了高二数学下...

长沙市高三理综培训机构联系方式
下一篇:没有了 上一篇:怀化市高三生物辅导学校开课时间

热门补习推荐

最新补习资讯

回顶部