荣誉资质 新闻 24小时咨询热线: 4008-699-569 全国统一投诉电话(仅处理投诉问题): 400-028-1009 戴氏教育 专注教育提升30
报价器在线查询费用报价

线上查询预约,享三重优惠好礼!!

  • 免费领取学习资料一套
  • 两人同行一人免单
  • 免费七天试读
  • 定制完整辅导教学方案

补习提分快人一步!

主动出击就是名校的第一步!

湖南补习咨询热线:4008-699-569

  • *
  • *

荷塘区高三数学辅导机构联系方式

文章出处: 浏览次数:发表时间:2021-02-18 07:50
荷塘区高三数学辅导机构联系方式,湖南戴氏教育补习培训机构,专注小学、初中、高中文化课补习培训,开办一对一、大班、小班等多种班型,其中设有单招培训、艺考文化课、高考复读等多种特色课程,专注解决学生学习难、学习成绩差、考试分数低等问题,专业名师、多年教龄老教师、名校退休教师强大师资阵容。详情咨询4008-699-569

查字典数学网为大家整理了高二数学下学期期末备考知识点归纳,供大家参考和学习,希望对大家的学习和成绩的提高有所帮助。八、导 数1.求导...

学习是一个不断深入的过程,他需要我们对每天学习的新知识点及时整理,接下来由查字典数学网为大提供了高二数学期末备考知识点整理,望大家好好阅读。

一、集合与简易逻辑:

一、理解集合中的有关概念

(1)集合中元素的特征: 确定性 , 互异性 , 无序性 。

(2)集合与元素的关系用符号=表示。

(3)常用数集的符号表示:自然数集 ;正整数集 ;整数集 ;有理数集 、实数集 。

(4)集合的表示法: 列举法 , 描述法 , 韦恩图 。

(5)空集是指不含任何元素的集合。

空集是任何集合的子集,是任何非空集合的真子集。

二、函数

一、映射与函数:

(1)映射的概念: (2)一一映射:(3)函数的概念:

二、函数的三要素:

相同函数的判断方法:①对应法则 ;②定义域 (两点必须同时具备)

(1)函数解析式的求法:

①定义法(拼凑):②换元法:③待定系数法:④赋值法:

(2)函数定义域的求法:

①含参问题的定义域要分类讨论;

②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。

(3)函数值域的求法:

①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;

②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;

④换元法:通过变量代换转化为能求值域的函数,化归思想;

⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;

⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;

⑦单调性法:函数为单调函数,可根据函数的单调性求值域。

⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。

三、函数的性质:

函数的单调性、奇偶性、周期性

单调性:定义:注意定义是相对与某个具体的区间而言。

判定方法有:定义法(作差比较和作商比较)

导数法(适用于多项式函数)

复合函数法和图像法。

应用:比较大小,证明不等式,解不等式。

奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;

f(x) f(-x)=0 f(x) =-f(-x) f(x)为奇函数。

判别方法:定义法, 图像法 ,复合函数法

应用:把函数值进行转化求解。

周期性:定义:若函数f(x)对定义域内的任意x满足:f(x T)=f(x),则T为函数f(x)的周期。

其他:若函数f(x)对定义域内的任意x满足:f(x a)=f(x-a),则2a为函数f(x)的周期.

应用:求函数值和某个区间上的函数解析式。

四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。

常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)

平移变换 y=f(x)→y=f(x a),y=f(x) b

注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过 平移得到函数y=f(2x 4)的图象。

(ⅱ)会结合向量的平移,理解按照向量 (m,n)平移的意义。

不定期的对知识点进行归纳总结,有利于知识点的掌握,查字典数学网高中频道给大家编辑了高一年级下学期数学期末常考知识点总结,供大家参考...

戴氏高考补习班

对称变换 y=f(x)→y=f(-x),关于y轴对称

y=f(x)→y=-f(x) ,关于x轴对称

y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称

y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)

伸缩变换:y=f(x)→y=f(ωx),

y=f(x)→y=Af(ωx φ)具体参照三角函数的图象变换。

一个重要结论:若f(a-x)=f(a x),则函数y=f(x)的图像关于直线x=a对称;

五、反函数:

(1)定义:

(2)函数存在反函数的条件:

(3)互为反函数的定义域与值域的关系:

(4)求反函数的步骤:①将 看成关于 的方程,解出 ,若有两解,要注意解的选择;②将 互换,得 ;③写出反函数的定义域(即 的值域)。

(5)互为反函数的图象间的关系:

(6)原函数与反函数具有相同的单调性;

(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。

七、常用的初等函数:

(1)一元一次函数:

(2)一元二次函数:

一般式

两点式

顶点式

二次函数求最值问题:首先要采用配方法,化为一般式,

有三个类型题型:

(1)顶点固定,区间也固定。如:

(2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。

(3)顶点固定,区间变动,这时要讨论区间中的参数.

等价命题 在区间 上有两根 在区间 上有两根 在区间 或 上有一根

注意:若在闭区间 讨论方程 有实数解的情况,可先利用在开区间 上实根分布的情况,得出结果,在令 和 检查端点的情况。

(3)反比例函数:

(4)指数函数:

指数函数:y= (a>o,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a>1和0

(5)对数函数:

对数函数:y= (a>o,a≠1) 图象恒过点(1,0),单调性与a的值有关,在解题中,往往要对a分a>1和0

注意:

(1)比较两个指数或对数的大小的基本方法是构造相应的指数或对数函数,若底数不相同时转化为同底数的指数或对数,还要注意与1比较或与0比较。

【2016年高二数学期末备考知识点整理】相关文章:

文章内容摘自网络,如有侵权请联系删除!!

为了帮助大家在考试前,巩固知识点,对所学的知识更好的掌握,查字典数学网为大家编辑了高二数学下册期末考试知识点归纳,希望对大家有用。...

荷塘区高三数学辅导机构联系方式
下一篇:没有了 上一篇:松木经济开发区高三地理补习班价格

热门补习推荐

最新补习资讯

回顶部